新一代 IPv6 網路協定

Module I: Introduction to IPv6

Module II: IPv6 Operation

Module III: IPv6 Configuration

Module I Introduction to IPv6

- Module 1.1: Rationale for IPv6
- Module 1.2: IPv6 Features and Benefits
- Module 1.3: IPv6 Header Format

Module 1.1: Rationale for IPv6

IPv4 Address Space

69% of space is allocated as of 2002-03 (Source: IANA registry)

Number of IPv4 Address Allocation in Recent Years

IPv4 Allocation Growth

A linear model on the first derivative gives 2006 as complete exhaustion.

Short History of IPv6

- 1990 Prediction of the exhaustion of IPv4 Class B by 1994.
- $_{1991}$ + ROAD group formed to address routing.
- 1992 Prediction of the exhaustion of IPv4 addresses by 2005-2011.
- 1993 IPng Proposals solicitation (RFC 1550).
- 1994 CATNIP, SIPP, TUBA analyzed. SIPP+ chosen. IPng wg started.
- 1995 First specification: RFC 1883.
- 1996 6Bone started.
- 1997 First attempt for provider-based address format.
- 1998 First IPv6 exchange: 6tap.
- 1999 Registries assign IPv6 prefixes. IPv6Forum formed.
- 2000 + Major vendors bundle IPv6 in their mainstream product line.

- Private address space and Network Address Translation (NAT) can be used instead of a new protocol
- NAT has many implications:
 - -Breaks the end-to-end model of IP
 - Mandates that the network keeps the state of the connections
 - Makes fast rerouting difficult

NAT Inhibits Access to Internal Servers

Module 1.2: IPv6 Features and Benefits

IPv6 Main Features

Larger address space:

- Global reachability and flexibility
- Aggregation
- Multihoming
- Autoconfiguration
- Plug-and-play
- End-to-end without NAT
- Renumbering

Mobility and security:

- Mobile IP RFC-compliant
- IPsec mandatory (or native) for IPv6

Simpler header:

- Routing efficiency
- Performance and forwarding rate scalability
- No broadcasts
- No checksums
- Extension headers
- Flow labels

Transition richness:

- Dual stack
- 6to4 and manual tunnels
- Translation

Larger Address Space

IPv4

- 32 bits
- =~ 4,200,000,000 possible addressable nodes

IPv6

- 128 bits: 4 times the size in bits
- =~ 3,4 * 10³⁸ possible addressable nodes
- =~340,282,366,920,938,463,374,607,432,768,211,456
- =~ 10³⁰ addresses per person on the planet

Stateless Autoconfiguration

- The use of link-layer addresses inside the address space
- Autoconfiguration with "no collisions"
- Offers "Plug-and-play"

Renumbering

Larger address space enables:

 Renumbering, using autoconfiguration and multiple addresses

Multicast Use

Broadcasts in IPv4

- Interrupts all computers on the LAN even if the intent of the request was for one or two computers
- Can completely bring down a network ("broadcast storm")
- No broadcast in IPv6
 - Replaced by multicast
- Multicast
 - Enables the efficient use of the network
 - Multicast address range is much larger

Simple and Efficient Header

- 64-bit aligned fields and fewer fields
- Hardware-based efficient processing
- Improving routing efficiency, performance, and forwarding rate scalability

No Checksum

- No checksum at the IP layer, no recalculation by the routers
- Improved routing efficiency, performance, and forwarding rate scalability
- Error detection is done by link layer and transport layer

Flow Label Field Enables Per-flow Processing

- A new flow label inside the IP header
- Enables per-flow processing for differentiation at the IP layer
- Length of 20 bits

Extension Headers

- Extension headers
- Handles the options more efficiently
- Enables faster forwarding rate and end-nodes processing

Extension Headers

Extension headers are daisy chained

Mobility

Mobility means:

- Mobile devices are fully supported while moving
- Built-in on IPv6
 - Any node can use it
- Efficient routing means performance for end users

Security

Security means:

- End-to-end network security (integrity, authentication, confidentiality)
- Built-in on IPv6
 - Any node can use it

Transition Richness

Transition richness means:

- No fixed day to convert, no need to convert all at once
- Different transition mechanisms are available
 - Smooth integration of IPv4 and IPv6
- Different compatibility mechanisms
 - IPv4 and IPv6 nodes can talk communicate

Module 1.3: IPv6 Header Format

IPv4 Header Format

IPv6 Header Format (Cont.)

IPv4 & IPv6 Header Comparison

IPv4 Header

Version	IHL	Type of Service	Total Length				
Identification			Flags		Fragment Offset		
Time to Live Protocol		Header Checksum					
Source Address							
Destination Address							
Options					Padding		

IPv6 Header

Version	Traffic Class	Flow Label				
Pay	load Length	Next Header	Hop Limit			
Source Address						
Destination Address						

- Field name kept from IPv4 to IPv6

- Fields not kept in IPv6
- Name and position changed in IPv6
- New field in IPv6

Extension Headers

Extension Headers

Hop-by-Hop header

Processed by all hops in the path

Destination Option header

Processed only by the destination node

Source Routing header

Combines IPv4 strict/loose source routing concepts
Fragment header

AH and ESP header

- Used within IPSec
- Identical to the IPv4 version

Upper-layer header:

Used for the transport function (TCP or UDP)

Routing Header Format

Routing header is:

- An extension header
- Processed by the listed intermediate routers

Source Routing Header Operation

Source Routing Header Operation (Cont.)

Fragment Header

A fragment header is used when a node must send a packet larger than the path MTU.

User Datagram Protocol

UDP checksum must be computed.